myNumbers
with 201 values ranging from 100 to 300 hint use c()
myNumbers <- c(100:300)
myNumbers
## [1] 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
## [19] 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
## [37] 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
## [55] 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
## [73] 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
## [91] 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
## [109] 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
## [127] 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
## [145] 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
## [163] 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
## [181] 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
## [199] 298 299 300
head()
and tail()
.head(myNumbers)
## [1] 100 101 102 103 104 105
tail(myNumbers)
## [1] 295 296 297 298 299 300
mean()
mean(myNumbers)
## [1] 200
Find the function to calculate standard deviation and median hint use ??
Create a variable called m_func_var
that stores all the functions and variables on your system that start with the letter m
.
m_func_var <- apropos("^m")
m_func_var
## [1] "mad" "mahalanobis"
## [3] "maintainer" "make_translations_pkg"
## [5] "make.link" "make.names"
## [7] "make.packages.html" "make.rgb"
## [9] "make.socket" "make.unique"
## [11] "makeActiveBinding" "makeARIMA"
## [13] "makeClassRepresentation" "makeExtends"
## [15] "makeGeneric" "makeMethodsList"
## [17] "makepredictcall" "makePrototypeFromClassDef"
## [19] "makeRweaveLatexCodeRunner" "makeStandardGeneric"
## [21] "makevars_site" "makevars_user"
## [23] "manova" "mantelhaen.test"
## [25] "Map" "mapply"
## [27] "margin.table" "marginSums"
## [29] "mat.or.vec" "match"
## [31] "match.arg" "match.call"
## [33] "match.fun" "matchSignature"
## [35] "Math" "Math.data.frame"
## [37] "Math.Date" "Math.difftime"
## [39] "Math.factor" "Math.POSIXt"
## [41] "Math2" "matlines"
## [43] "matplot" "matpoints"
## [45] "matrix" "mauchly.test"
## [47] "max" "max.col"
## [49] "mcnemar.test" "md5sum"
## [51] "mdeaths" "mean"
## [53] "mean.Date" "mean.default"
## [55] "mean.difftime" "mean.POSIXct"
## [57] "mean.POSIXlt" "median"
## [59] "median.default" "medpolish"
## [61] "mem.maxNSize" "mem.maxVSize"
## [63] "memCompress" "memDecompress"
## [65] "memory.limit" "memory.profile"
## [67] "memory.size" "menu"
## [69] "merge" "merge.data.frame"
## [71] "merge.default" "mergeMethods"
## [73] "message" "metaNameUndo"
## [75] "method.skeleton" "MethodAddCoerce"
## [77] "methods" "methodSignatureMatrix"
## [79] "MethodsList" "MethodsListSelect"
## [81] "methodsPackageMetaName" "mget"
## [83] "min" "mirror2html"
## [85] "missing" "missingArg"
## [87] "Mod" "mode"
## [89] "mode<-" "model.extract"
## [91] "model.frame" "model.frame.default"
## [93] "model.matrix" "model.matrix.default"
## [95] "model.matrix.lm" "model.offset"
## [97] "model.response" "model.tables"
## [99] "model.weights" "modifyList"
## [101] "month.abb" "month.name"
## [103] "monthplot" "months"
## [105] "months.Date" "months.POSIXt"
## [107] "mood.test" "morley"
## [109] "mosaicplot" "mostattributes<-"
## [111] "mtcars" "mtext"
## [113] "multipleClasses" "mvfft"
## [115] "my.at" "myFirstVector"
## [117] "myNumbers"
head()
and tail()
list the first or last 6 data points of whatever is passed to them. Use the help page for head()
and tail()
to list the first and last 10 results of m_func_var
.head(m_func_var, n=10)
## [1] "mad" "mahalanobis" "maintainer"
## [4] "make_translations_pkg" "make.link" "make.names"
## [7] "make.packages.html" "make.rgb" "make.socket"
## [10] "make.unique"
tail(m_func_var, n=10)
## [1] "morley" "mosaicplot" "mostattributes<-" "mtcars"
## [5] "mtext" "multipleClasses" "mvfft" "my.at"
## [9] "myFirstVector" "myNumbers"
sd()
and median()
sd(x)
## [1] 15.81139
median(x)
## [1] 55
Find all the as.
functions available in R. Note that a .
is a special character in a regular expression search, so to search for the .
we need to comment it out to override itโs 'specialness'. We do so with a \
. However, \
is also a special character, so we need to comment it out too, with an additional \
.
apropos("^as\\.")
## [1] "as.array" "as.array.default"
## [3] "as.call" "as.character"
## [5] "as.character.condition" "as.character.Date"
## [7] "as.character.default" "as.character.error"
## [9] "as.character.factor" "as.character.hexmode"
## [11] "as.character.numeric_version" "as.character.octmode"
## [13] "as.character.POSIXt" "as.character.srcref"
## [15] "as.complex" "as.data.frame"
## [17] "as.data.frame.array" "as.data.frame.AsIs"
## [19] "as.data.frame.character" "as.data.frame.complex"
## [21] "as.data.frame.data.frame" "as.data.frame.Date"
## [23] "as.data.frame.default" "as.data.frame.difftime"
## [25] "as.data.frame.factor" "as.data.frame.integer"
## [27] "as.data.frame.list" "as.data.frame.logical"
## [29] "as.data.frame.matrix" "as.data.frame.model.matrix"
## [31] "as.data.frame.noquote" "as.data.frame.numeric"
## [33] "as.data.frame.numeric_version" "as.data.frame.ordered"
## [35] "as.data.frame.POSIXct" "as.data.frame.POSIXlt"
## [37] "as.data.frame.raw" "as.data.frame.table"
## [39] "as.data.frame.ts" "as.data.frame.vector"
## [41] "as.Date" "as.Date.character"
## [43] "as.Date.default" "as.Date.factor"
## [45] "as.Date.numeric" "as.Date.POSIXct"
## [47] "as.Date.POSIXlt" "as.dendrogram"
## [49] "as.difftime" "as.dist"
## [51] "as.double" "as.double.difftime"
## [53] "as.double.POSIXlt" "as.environment"
## [55] "as.expression" "as.expression.default"
## [57] "as.factor" "as.formula"
## [59] "as.function" "as.function.default"
## [61] "as.graphicsAnnot" "as.hclust"
## [63] "as.hexmode" "as.integer"
## [65] "as.list" "as.list.data.frame"
## [67] "as.list.Date" "as.list.default"
## [69] "as.list.difftime" "as.list.environment"
## [71] "as.list.factor" "as.list.function"
## [73] "as.list.numeric_version" "as.list.POSIXct"
## [75] "as.list.POSIXlt" "as.logical"
## [77] "as.logical.factor" "as.matrix"
## [79] "as.matrix.data.frame" "as.matrix.default"
## [81] "as.matrix.noquote" "as.matrix.POSIXlt"
## [83] "as.name" "as.null"
## [85] "as.null.default" "as.numeric"
## [87] "as.numeric_version" "as.octmode"
## [89] "as.ordered" "as.package_version"
## [91] "as.pairlist" "as.person"
## [93] "as.personList" "as.POSIXct"
## [95] "as.POSIXct.Date" "as.POSIXct.default"
## [97] "as.POSIXct.numeric" "as.POSIXct.POSIXlt"
## [99] "as.POSIXlt" "as.POSIXlt.character"
## [101] "as.POSIXlt.Date" "as.POSIXlt.default"
## [103] "as.POSIXlt.factor" "as.POSIXlt.numeric"
## [105] "as.POSIXlt.POSIXct" "as.qr"
## [107] "as.raster" "as.raw"
## [109] "as.relistable" "as.roman"
## [111] "as.single" "as.single.default"
## [113] "as.stepfun" "as.symbol"
## [115] "as.table" "as.table.default"
## [117] "as.ts" "as.vector"
## [119] "as.vector.factor"
dailyHighs
are higher than 27:length(dailyHighs[dailyHighs > 27])
## [1] 8
Temperature
.Note your values will be different, but the descriptive categories should be the same.
summary(dailyHighs)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 20.00 21.75 25.50 26.05 31.00 34.00
Replace the temperatures in Temperature
that are above 27, but this time, replace them with values that are double their own, so if you have 30, it becomes 60, 32, 64 and so on.
dailyHighsMultiplied <- replace(dailyHighs, dailyHighs > 27, dailyHighs[dailyHighs > 27] * 2) ## Vector, condition, values where this condition is true * n
dailyHighsMultiplied
## [1] 24 22 56 25 68 26 23 21 68 20 21 20 26 62 64 62 60 20 62 22
Take a few minutes and try to:
Height
vector data from lowest to highest value;Do the above using the following functions:
sort()
unique()
as.factor
summary
sort(Height)
## [1] 121 130 136 139 142 153 154 155 157 158 161 163 163 166 168 176 180 184 186
## [20] 190
sort(unique(Height))
## [1] 121 130 136 139 142 153 154 155 157 158 161 163 166 168 176 180 184 186 190
sort(summary(as.factor(Height)))
## 121 130 136 139 142 153 154 155 157 158 161 166 168 176 180 184 186 190 163
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
Sort our matrix, by Height and then by Weight. Do this using the function order()
Note
sort()
rearranges a vector in ascending or descending order while order()
organizes a multi-dimensional object based on individual vectors.
completePhysDataSet[ order(completePhysDataSet[, "Height"], completePhysDataSet[, "Weight"]), ]
## Height Weight Age
## [1,] 120 67 21
## [2,] 121 89 22
## [3,] 123 55 21
## [4,] 127 54 20
## [5,] 130 75 24
## [6,] 131 65 24
## [7,] 132 55 21
## [8,] 136 73 23
## [9,] 139 60 21
## [10,] 142 79 23
## [11,] 147 61 21
## [12,] 149 83 21
## [13,] 151 83 22
## [14,] 153 76 23
## [15,] 153 88 20
## [16,] 154 65 22
## [17,] 155 59 21
## [18,] 155 62 21
## [19,] 156 76 22
## [20,] 157 55 20
## [21,] 158 54 22
## [22,] 159 69 22
## [23,] 161 69 20
## [24,] 163 66 23
## [25,] 163 70 23
## [26,] 166 63 25
## [27,] 168 51 21
## [28,] 170 83 20
## [29,] 171 67 22
## [30,] 174 83 25
## [31,] 176 61 22
## [32,] 178 57 23
## [33,] 180 72 22
## [34,] 184 60 23
## [35,] 184 66 24
## [36,] 184 80 22
## [37,] 185 62 21
## [38,] 186 83 24
## [39,] 190 60 20
## [40,] 190 63 20